
• 

- 

THIS REPORT HAS BEEN DELIMITED 

AND CLEARED FOR PUBLIC RELEASE 

UNDER DOD DIRECTIVE 5200,20 AND 

NO RESTRICTIONS ARE IMPOSED UPON 

ITS USE AND DISCLOSURE, 

DISTRIBUTION STATEMENT A .  ^ 

APPROVED FOR PUBLIC RELEASEj 

DISTRIBUTION UNLIMITED, 



Armed Services Technical Information Agency 
Because of our limited supply, you are requested to return this copy WHEN IT HAS SERVED 
YOUR PURPOSE so that it may be made available to other requesters.  Your cooperation 
will be appreciated. 

It: 

_   I. 

li 

NOTICE;   WHEN GOVERNMENT OR OTHER DRAWINGS, SPECIFICATIONS OR OTHER DATA 
ARE USED FOR ANY PURPOSE OTHER THAN IN CONNECTION WITH A DEFINITELY RELATED 
GOVERNMENT PROCUREMENT OPERATION, THE U. S. GOVERNMENT THEREBY INCURS 
NO RESPONSIBILITY, NOR ANY OBLIGATION WHATSOEVER; AND THE FACT THAT THE 
GOVERNMENT MAY HAVE FORMULATED. FURNISHED, OR IN ANY WAY SUPPLHSD THE 
SAID DRAWINGS, SPECIFICATIONS, OR OTHER DATA IS NOT TO BE REGARDED BY 
IMPLICATION OR OTHERWISE AS IN ANY MANNER LICENSING THE HOLDER OR ANY OTHER 
PERSON OR CORPORATION, OR CONVEYING ANY RIGHTS OR PERMISSION TO MANUFACTURE, 
USE OR SELL ANY PATENTED BJVENTION THAT~MAY IN ANY WAY BE RELATED THERETO. 

Reproduced    by 

DOCUMENT SERVICE CENTER 
KNOTT BUILDING, DAYTON, 2, OHIO 



Q- Hydrornagnetic Effects of Upwelling 
Near a Boundary 

BY 

OQ 

W. L. BADE 

TECHNICAL REPORT NO.  10 

September 20, 1954 

EARTH'S MAGNETISM AND MAGNETOHYDRODYNAM1CS 

CONTRACT Nonr 1238(00) 

OFFICE OF NAVAL RESEARCH 

DEPARTMENT OF PHYSICS 

UNIVERSITY OF UTAH 

SALT LAKE CITY 



• It—w 

[ HYDROMAGNETIC  EFFECTS   OF  UP .YELLING NEAR  A BOUNDARY 

W.   L.   Bade 

Department of Physics 

University of Utah 
Salt Lake City, Utah 

Contents 

1. Introduction 

2. The Induction Problem 

3. The Diffusion Problem 

Appendix A: 

Solution of Laplace's Equation in a 
Semi-infinite Region 

Supplement 

Diffusion-Induction Equation for  the 
Energy Density 

Page 

1 

4 

13 

24 

25 

?*• 

Editor's note: 

Dr. Bade, who joined this project early in June, 1954, had 

to leave us in September pursuant to action of his draft board. 

The present report, while not in as complete a shape as Dr. Bade 

would wish, nevertheless contains a number of contributions and 

theorems of value for hydromagnetic theory.  (W. M. E.) 
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1.  Introduction 

The  geomagnetic   secular*   variations   may  be   attributed   to  the 

distortion  of   pre-existing magnetic fields   in  the  earth's   core  by 

upwelling motions   of   the   fluid  toward   the   core-mantle  boundary 

(Elsasser,   1950).     The  purpose   of the work  reported  here   is   to 

compute  the   hydromagns tic  effects   of  such an upwelling.     The  main 

problem is   to  determine   the   effects  at   bhe   surface   of  the   core, 
p since   the  field  in  the  mantle   is   a  solution  of  V  B =  0  determined 
AM* 

by the boundary conditions at the surface of the core and at 

infinity. 

Hydrcmagnetic effects in a homogeneous conducting fluid 

are described by the equation 

! 

? 

S= Vx (v x B) + W V2B, (1) 

?«. 

where as usual ^  = {AO)~
±
.     It will be assumed that v = v(r) 

is a given stationary velocity fields we are not concerned with 

the problem of the ponderomotive reaction of the field on the fluid 

motion.  Equation (l) is in general difficult to solve exactly. 

Here a rather crude approximation is adopted.  Instead of letting 
o 

the induction term V x (v x B) and the diffusion term y 7 B act 
j**«      **** w m ***** 

•a- We use the rationalized mks system, see E]sasser (1954) 
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concurrently on the fisld E^g  we let them act consecutively.  That 

is, the problem is to be solved approximately in two staps: 

1. The magnetic viscosity v^m is set equal to zero and the 

fluid motion v is permitted to operate on the field for a time t« 

2. The fluid motion is stopped and diffusion is permitted 

to act for an equal time t on the field which was produced by the 

fluid motion in step 1. 

The final field resulting from these two steps is taken as 

an approximation to the field which would be produced by the 

simultaneous action of induction and diffusion for a time t. 

In view of the unprecise nature of the ne thod used for 

solving equation (1), and since the upwelling should be fairly 

well localized, it would be pointless to complicate the problem 

by working in spherical coordinates.  Instead, the surface of the 

core will be represented by the infinite plane z = 0; the core 

fluid will be assumed to occupy the region z <C 0, the mantle the 

region z ^> 0. 

The local rectangular coordinate system is taken with the 

z-axis upward and the x-axis pointing south.  Two types of pre- 

existing fields, upon which the induction process acts, will be 

considered* 

1.  A poloidal dipole field will appear in the local 

system as a uniform field 

b  = -B sin vys  b  = 0 •  bz - "B :OS^. (2a) 

Here   ^y   is   the  angle  between the  positive   z-axis   and  the  direction 

of the  vector -b?    <¥ is   positive   in  the   northern hemisphere. 

Assuming  that   the field   is   due   to  a dipole  of moment   a  located  at 

,flfc*S*^;S***^^«^^,"i!^'*.-'-*'"-   **' W *JLfv.*J!"*> 
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• 
the earth's  center  and directed   toward  the  south pole, 

B  = ar~3(l  + 3  cos^)1/2 

sinu; =   (1 + 3 cos29)"1/2sin e (3) sintp 

cos <<f =  2(1 + 3  cos2e)"1/2cos   G. 

Here  r  is   the radius   of   the  core  and  6   is  the  colatitude  from the 

north pole  of  the  point   under  consideration.     In the   local 

cylindrical  coordinate  system,   the  dipole  field becomes 

b     -  -B  sin U>   co3 <f 0 

bv> = B  sin v|^ sin <p (2b) 

b„  = =B cos  V- 

II.     A  toroidal  field   in  the   y-direction would be   repre- 

sented  in general   by 

b^ = ta    =  09     b„ = B  sin kz„  e x z '        y o 
•k2Vmt 

as  can be  shewn by separation of  variables   in   (l),  with v =  0  and 

the  boundary condition b   =  0  on the   surface   z     =0.     If  k =  0, ~*\ o 
the   solution reduces   to 

b.  =  0,     b,..  =  0zo. (4a) 

Tliis   last  form  is   the   one  which will  be  used  here.     It   should   be 

a  good  enough approximation to  the  general   solution near  the   sur- 

face   of  the   core.     It   is  stable  against  diffusion.     In  local 

cylindrical  coordinates,   (4a)   becomes 

bp  =  pzo  sinfo*    bf   =  P25o  cos<Po»     bz  =  °* (4b) 

•The- poloidal •dl'po-Hr field   (2b)   can  be  derived  from the 

vector potential 

MgP»ajWWB»s*«K»°*V--««**-- --»«--- •-•Vfif^'r-wfl »*v. "-»iC;.»-.i.'.-;rf«'fc,--^V^.*» •*'•*' --W'- 

,    v - •:;   ^ .;'•••  -•-•   •:    • i •    i ,~\f •; y •••. ••' - •,:   • 

f$<  -i 
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ap = B(Z
0

S^-^Y   "  Pcco3«f    cos <p0)sin <pQ 

a<P = B(zQ3in 4^   -  P0co3 y;   cos a>0)cos <po 

a„  = 0. 

and the   toroidal field   (4b)   can be  derived  from 

ap = a^ = 0,     az = -0zoPo  cos <pQ 

•4- 

(2c) 

2.     The   Induction Proble m 

Parker   (1954)   has  shown  that   the  hydromagne tic   induction 

equation   (l)    (with i/     =  0)   has   a formal  integral  which  is  exactly 

analogous   to  Cauchy?s   integral  of Helmholtz's  equation for  the 

vorticity  in hydrodynamics.     A similar  integral  can easily be 

derived for   the vector  potential.     It  is   simplest  to  Start  from 

the   integral   theorem 

IE/JSL- d§-= o. (5a) 

which   implies   that 

! 

'*    1 

7i 

dt ^A "   *£.=  0, (5b) 

where   the   integration  is   along an arbitrary  closed j& th.     Here 

d/dt  denotes   the   substantial   derivative,   i.e.   the  surface   or path 

of  integration is  assumed   to move with  the fluid.     It   is   convenient 

to work  in  general  coordinates,   as   this  ensures   that   the  results 

will  be   valid   in  the  curvilinear   coordinates  which will  be   U3ed   in 

the   induction   calculations„     Equation   (5b)   becomes 

/  <%dxm "  aL<)  = 0, 

where   a,    are  the   covariant   components   of  the   vector  potential   at 

•.-jC-Wtf»!jWHl»i'''W'f^"-iC*-"*"""-'***'"!***-~**JI""~<i» ""»"*• •"*-•• n »" 
1 
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the location x^T of a given fluid particle at time 0. and A are o     ° x »     m 

those of the vector potential at the location x of the same fluid 

particle at time t.  Now 

dx^ - dxm —J. 
°      3xm 

Hence 
ax 

A_ = a, 
in   ,_ dxm  ax1" 

where ^ is an arbitrary function of xn, t.  The gradient term will 

contribute nothing to J3, and can be omitted; 
L 

12. A_ - a. m   (. 
ix< 
dxE 

(6) 

The  Cauchy-Parker  integral for B can be   obtained either by 

taking  the  curl   of   (6)   or  by direct  calculation  from  (5a).     The 

latter method was  used  by Parker  in his   original   derivation,.     Here 

the former method will be   used,  as  it  is   somewhat  shorter: 

B i   _   1 
g 

•1/2 .ljk, 
Oh, 

6x- 

.. 1     -1/2  _. 
- o g e 

, ..   da,   faxm 6xL      ax
m   ax*: 1 .ijk  L      o  o  m  0     O j 

2 & "       exm la^ axk     axk   ix^J* o   u 

Multiplying both sides  by  3x£/Sx"    and  utilizing the  definition of 

a  determinant  in  terms   of  the   e 

a 

ijk one   finds 

ax! 
1       g        | 3xP ax 

Hence 

dxm 

1 --1/2 
2 g 

ax' 

ax 
,v**- /"-Jfe . 

5xJ m 

pr _ 1 axx   . 
o     - -f ——r b 7 axP 

p (7a) 

where 

1/2 a^ 
ax a (7b) 

««****«*•<* 
1 
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The quantities bp ara the contra variant components of the field at 

the location x^ of a given fluid particle at time 0, and the Br are 

those of the field at the location x  of the same particle at time t, 

Let §  be a system of Cartesian coordinates,  ^hen 

s, ox  ox 
ij ' Smn -^1 JJ$ 

and hence 

3x" 
- 1/2 

Now the quantity |d§,/df«H is known in the Lagrangian form of hydro- 

dynamics to have the value unity in case of incompressible flow. 

This quantity is just J (7b)i 

3xm dxo 
\ e»0/ 

/2 .m ox 
n ox. 

= J. 

Hence J = 1 for incompressible flow. 

It will prove convenient to work in cylindrical coordi- 

nates p, *p, z, where ^6) and (7) become 

?p-  ap * po 3p~ a* "" W 

dzc 
a* + -5— a. 

< 

A   1 dpo   + ^2 
afo   . 1 3zo Af - p -&r a

P 
+ p   "Sf af * p "ST az 

3p 3c      dz 
A      o    _i_ _,   ~o    j.   o 
Az ~ -oT- ap + po "Sz" af  "oT" az 

Bp  7|3p7 bp  PQ -o^ 
D<p  azo 

n     - lfdz  K  +1  
5z  v-  + dz  K B, = —hrr- b„ * -r- -sr- br. * --- ° 

(8) 

(9) 

p  6®   © ro  ^O dz  ' o 

The equations (6) to (9) are based on the Lagrangian form 

• ^..- (usrs^ ---J:—-3— 
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of hydrodynamics, in which the motion is described in terms of the 
»    *   J 

trajectories x = x (xQ
J, t) of the individual fluid particles. 

However, it is easier to investigate the character of the fluid 

motion as a whole when U3ing the Euleriun method of velocity fields, 

For this reason, we begin by using the latter method and shift over 

to the Lagrangian viewpoint only when we have formulated the des- 

cription of a suitable fluid motion.  It will be assumed that the 

flow is incompressible, V • v = 0.  1he formula for the divergence 

in cylindrical coordinates is 

V 

M 

P "3p 

Hence a velocity field defined by 

vp="|R(p)Z'U), Tf = 0, vz =| R
,(p)Z(z) (10) 

m, 

is a case of incompressible flow exhibiting rotational symmetry 

about the z-axis.  Here (inconstant and R and Z are arbitrary differ- 

entiate functionso  Since v- = 0, the streamlines all lie in 

planes <P = constant,  '^he equation of the streamlines is R(p)Z(z) 

= constant.  ^ince the fluid motion is 3teady, these streamlines 

are also the trajectories of the fluid particles. 

In order to get a model which is physically reasonable and 

which matches the problem, it is necessary to impose some conditions 

on the functions R, Z.  It will be assumed that 

1. the fluid does not cross the surface z = 0^ hence 

vz = 0 at z = 0, or Z(0) = 0. 

2. on the z-axis, there is no radial motion*, henbe 

v = 0 at p = 0, or •£ R(p)—» 0 as p -* 0. 

These two assumptions are essential.  One can also impose the less 

important but still plausible assumptions that 

t^^l«<Ba»*«
,,»s*«l'lw,-,—' 



WBWSW^**!"--••**««,' '»tv*^>» •**s*«fc<WHSfc 

!?> 
-8- 

> 
5 

3. the only radial motion is the spreadlng-out as the 

field approaches the plane z = 0> hence v. = 0 at 

z = ~oo , or Z'(-oo) = 0. 

4. in any plane z = constant, the motion at large distances 

from the point p = 0 resembles that from a point source> 

henc6 Vp/—'P~ at p = oo , or R(OD) = constant. 

It is easy to find functions R,Z satisfying these conditions. 

However, it is simplest not to specialize these functions at this 

stage, but rather to carry the calculation through (approximately) 

in terms of the symbols R, Z themselves.  We will use power series 

expansions in t, discarding terms of higher than the second degree. 

From (10), in this approximation, 

P~  = ,=o+£RZ't+ SLy.    RR'Z'^-RR'ZZ"- i 
° F 20^   i P 

.u     1 ^2.7 t2 

2p 

=  «L   -  £  R'zt   + ^-75   [n%Z-BR*   +1RR' 
P 2p^   L P . 

(11) 

zz't2 

and correspondingly 

p = p  - §- RZ't + i-s RR'Z'^RR'ZZ"*- J- R2Z 
Ho      . fiprL Ho 

,21, 

-z~ ft- R'zt • S^JR'W + I 
(12) 

RR 
sp; 

zz't2 

In (11), R, Z and their derivatives are functions of the final 

coordinates p, z of the particle; in (12), they are functions of 

the initial coordinates p , z .  If one plans to use (8) in com- 

puting the final field £,   one calculates the derivatives axQ  /dxd 

as functions of p, z directly from (11): 

.2 
J^2 = ! * £ (R'_ I  R)Z't + S-_rR'

2
Z'
2+ RR"ZI2-R,2ZZU 

, . ol   o (13)' 
-  RR"ZZ!;- -i RR*Z,2+ -I RR'ZZ'*

1
* ^5 R2Zi2|t2 

P P p2 J 

^•^.pKlKIIIKB :^^Jffi||fe;^ 
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f 

'" 

*. JL° = § RZ«t + a_^ [RH»Z»Z».RR'ZZ"L § RVZ"'^
2 

oz   P      0n£ L P     J 

8zo 
<5p- - § (R*- h R')zt + fiL^fR,R"-RRm- J R,2+ ? RR"- 5. RR"|zz'tJ 

P      P        2p^
L p     p      p^   J 

(13) 

jr2 = 1 - | R'Z't + SL__[R'2-RR*+ i RR'1 (Z,2+ ZZ*)t2 
3F" 

3<*> 0  a*0  a<p0 _ a?0    ,. 

On the other hand, if one plans to use (9) In computing B, one 

must calculate the derivatives Qx /dx  ^  from (12) , and then elimin- 

ate p  and zQ  from the resulting expressions by means of substi- 

tutions of the sort 

1-1   a T)7 '+• 
Po " P " p» 

R(pQ) = R(p)[l + J R'(p)Z'(z)t|, 

which  give   the  final result correct to terms  in t   .     One finds 

|P_ =  i - §(H'-  1 R)Ziit  + aL   r(R.2_HR»)(z.2+zz»)       1    R2z.2lt2 
°P0 H H 2p      L P J 

|§- =  -§ RZ*t   - *! RR'(Z'Z--ZZMU2 
8,2

 o P 2pa 

|*- = a  (R._ 1 R.)Zt + aL|-RR'^R.R% 1 R,2 

-   I  RR"'   +  1^  RR'jzZ't2 

|§- =   1 + § R'Z't  + ^3   (R'2  + RR"   - J RR')(Z'2  -   ZZ")t2 

(14) 

2P 

_  3z     _  d 
^     ^J?r      ap o Ko o 

ifr-i. 
Substituting from (13) into (s) and taking the curl, or sub- 

atitr-hlncr from (14) Into (9) (with J = 1 since the flow is 

1 

- V. 
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incompressible),   one  finds   in the  ca3e   of   an initial  pololdal  field 

(2)   that   the  field   as  modified  by the  fluid motion  is   given by 

Bp  =  -B   siny cosf/ 1  - S   (R»   _ I R)Zft 

+ £l   [(H'8-RH»)(z'8+ZZ*)-l2.R8z,8]t2|        (15a) 

+ B  cos yfS RZ"t  + ^ RR'(Z'z'*-ZZm)t2j   . 

B    = B  sin*^  sin<p/l  - • RZ't 

if, RR'ZZ*- RR'Z'
2

- + ^ R
2
Z'

2L
-
2
 " 

2pOL P 
•>j (15b) 

Bz  = =  -B  siny>  ccsf> f|   (Rn  - i R')Zt 

+ «L[RR'
,,
-.R'R%  1  R'2- 1 RR% ^RR'Jzz't2]   (15c) 

vpjl* | R'z't + ^-g(R,2+RRM-iRR,)(Z'2-ZZn)t2) -B   cos 

In  the   case   of  an  initial  toroidal  field   (4)   one   finds   for 

the  final  field 

az   (Rt   .  1 R)z,t Bp = p  sinf J,  -^ 

+ fi!|  [(R'^RR"^'
2
-^^)   -   1     R2Z'2|t2 (16a) 

2P2  L .        „       p<* J 

- | R'Zt   + S-*   (3Rt2  .  RB«*„ 1 RR')ZZ't2( 
P gp<i P J 

„  «  RZ.t   + <^[RR'(ZZ
W

~Z'
2

)* J R2z'2|t2 

p^ 2P"3 L 

- §  R'Zt   +   SL_    (R'2-RR*   +  § RR')ZZ't2 I 
p 20 P J 

Bf = p cosy^z - -5 •  .  - gp8r.   ,-    -    ..  p__   J 

2 . (16b) 

..$5 

» 

* 
i 

r.-v.. 'i 
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Bz = (3  sin (p (fi£. (R"   - I RiJZt  - 5L (R'R«   ~ i R»2)z2tJ 

^p p p« p 

+ S-»   [RR"I - RIR«  + i R>
2
  - i RR» + ig, RR'JzZ't2} 

2 
} [RR»' - R'R" + i R'2 - i RR" + X 

2p" L P      P       p 

If the diffusion process is slow in comparison with the 

(16c) 

induction process (i.e. if v  is sufficiently small in the region 

z <"())., then (15) and (16) already give a crude approximation ^o 

the solution of equation (1).  Since Z(0) = 0_„ it is apparent 

that the field (16), produced by action of the fluid motion on the 

initial toroidal field (4), is zero on the boundary z = 0,  Thus 

the induction term V x (v x B) in equation (1) is, by itself, 

incapable of causing the toroidal field to manifest itself outside 

of the core. 

The condition Z(0) = 0 does not bring about such a marked 

simplification in the field (15), which is produced by action of 

the fluid motion on the initial poloidal field (2).  A few terms 

vanish in (15a) and (15b), and the first two lines of equation 

(15c) disappear.  In order to gain a certain insight into the 

meaning of these formulas, let us compute the average values 

_ p     •,      r     2-n 
B„(r)  =   (icr   )      /   /   B,(Ps<p90)pdpd<p (17) 

• 

I 

of the Cartesian components B, of B over a circle of radius r in 

the plarp z = 0,  These are 

i     r r 
E = - B sin 4; + B sin ^ • =•% fQ   iaR»Z'(0)t 

B  - 0 
7 

5p~ vR - RR w i RR« + %  R2)S-2(0)t2] dp 
P ) 

(18a) 

(18b) 

mmiwmn*sfo«**• 



1 

-   £' • 

• 18- 

B     =  -  B   c z 

(18c) 

03 i^ -  2B  cos ^    • ^~ /   /aR'Z' (0)t 

Q 

+ |p   (R'2 * RR"   "  p RR')z?2(0)t2]    dp. 

Thus TS^  = b^ + r~2i'1(r),  where  b^ is   the   ini bial field   (2a)   and 

the   quantities   I. (r)   are  the   changes   in  the   components   of b  due 

to  the  action  of   the   fluid motion,   integrated  over  a   circle  of 

radius  r   about  the   origin in the   plane   z  =  0. 

In the  mantle   (z>  0),   the   conductivity a   is   small   and  hence 

we  can set W„  =  co ,   approximately.     Then  in  this   region  B  is   a 
p 

solution  of  V    B =  0,  matching  the field  of  the   core   at  the  boundary 

z  ~  0  and reverting  to  the   uniform poloidal  field   (2)   at  infinity. 

A field whose   average   (17)   is   zero  over  every  circle   about  the 

origin  in the   plan9   z  = 0  will vanish more  rapidly  as   z —* oo   than 

a field whose   average  is   in  general non-zero.     In fact,   it  can  be 

shown"   that  I.(oo)   can be   taken as   a  roiagh measure   of  the   amount 

of field which will  penetrate  to  the   surface   of the mantle   and 

produce   an  observable   variation in the   field   there; 

Ix = B  sin^ | aR(oo )Z'(0)t   -  a2Z>2(0)t2 fQ  p^R^dpj 
v. ' 

1=0 
7 

I     =  «2B   c z 

(19a) 

(19b) 

(19c) os y  ( aR(oo )Z'(0)t 1 . 

Here  the   conditions   2  and  4   (pp.   7-8)   on R(p)   have  been   used   to 

simplify  and  evaluate   some   of   the   integrals. 

According to   this  model,   the  east  horizontal   component   of 

B   at the   surface   should  not   change   appreciably,   and   to   linear   terms 

•»• 
See  Appendix  A. 

*tri^*ww? »*••!• i m.- V~ T—•, . '• ;••-.• 
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in t the percentage change In the vertical component should be 

twice that in the horizontal component and should have opposite 

sign.  It should perhaps be emphasized that the above conclusions 

have only been demonstrated in the approximation in which cubic 

and higher terms in t are neglected, and in which the effects of 

diffusion are ignored. 

3.  The Diffusion Problem. 

i 

The problem of computing the effects of diffusion of a 

magnetic field across a surface of discontinuity in a is in general 

a formidable exercise in analysis.  In this section we will give 

this problem a precise formulation and attempt to draw some con- 

clusions about the diffusion of the fields (15) and (15). 

When v = 0 in (l)„ that equation reduces to the diffusion 

equation 

(20) _~r = i>   V B. 
dt    m "~ 

i 

This equation is valid throughout any region where o = constant. 

If o is a function of position, an additional term a     Vo x E 

appears on the right %   and if a is discontinuous at any point, 

equation (l) is not valid at that point. 

If a  is constant throughout space, the magnetic diffusion 

problem can be solved by a method exactly analogous to that used 

in the corresponding scalar diffusion problem (e.g. that of 

conduction of heat in an infinite homogeneous medium).  In this 

case, the problem can be split into three independent diffusion 

problems for the Cartesian components B  of _B^.  Using the method 

;* 
^^J^^^^)*>i»^^-^^*^^^^^ICTW'" • w—•**'* .. %_*,' ...    v- • ' * • 
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of  Fourier  transforms   ,   one   finds 

B 7. /o cr> 
(r,t)   =   Urnst)""'- / H(T> s0)   exp 

FT./ >rn 

d [      (r - r 

-CD 

o2 

-   (^-iL')2]d3p!o    (21) 

J    ~ 4vt 

d*n 
exp 

4vt 

and   from V  •   Bjrf,0)   =  0,   integrating by parts,   one  can show  that 

the   vector field defined by   (21)   is   solenoidal,  V   • J3(r,t)   = 0, 

The  same  result follows   directly  from  6B/'c3t  = - )L V  x   (V x B). 

The  problem  under consideration here  is   more   intricate,   as 

o  is discontinuous   at   the   surface   z  =  0: 

o  =  n. 

o  =   0 

for   z <  0 

for  z > 0 

Consequently, 

^m = "  =   W 
-1 

V     =co 

for   z <   0 

f Ox*  z > 0 

Hence in the region z^> 0, jJ. satisfies the equation v B = 0.  At 

z = 0, equation (20) is not valid.  According to the analogy with 

scalar diffusion theory, one would seek to determine six functions 

B , , B _ , Rzls 
B
xp» 

Bv2' Bz2 0f P°3ition anci time, such that 

B (r,0) is the initial field in z < 0, Bo(rf0) is the initial field 

in z > 0, the vector BL(r,t) satisfies equation (20) with V- V 
2 in the region z< 0, and the vector B0(r,t) satisfies V B0 = 0 

in the region z > 0.  Since the diffusion equation does not hold 

at s = 0S the- behavior of the functions Ek , _Bp on the boundary 

See Sneddon (1C51), chapter 5. 
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must be determined from boundary conditions.  There should be six 

of these, as there are six functions to b6 determined. 

In order to find these boundary conditions, one may first 

note that the behavior of the field at the boundary i3 certainly 

determined by the fundamental equations of electromagnetic theory 

in a medium at rests 

V x £ = - 3B/3t,  eV • £_ = p (22a) 

V x J3 = tf*.  dg/at + /*J,  V • J3 = 0 (22b) 

J = aE (22c) 

7 * JL + dP/dt = 0. (22d) 

In diffusion theory, the boundary conditions are relations which 

must be satisfied for t>0, but not necessarily for t = 0. »Vhen 

t ) 0, E and B and their time derivatives are certainly finite. 
*        MM* -"V—-• " 

Hence it follows from (22b) that at z = 0, oho vector B^ is con- 

tinuous; J3. = Jto°     ^rom the first equation of (22a), it follows 

that F    and E_ are continuous at z = 0.  Prom the second equation 

(22a), E  «• E _ = t/e, where x  is t,he   surface density of charge 

on z = 0.  According to (22d), J _ - J - = - dt/dt.  Combining 
Z c, Z X 

these last two relations with the first equation of (22b), one 

finds that (V x B)  is continuous at z = 0. <**• z 

In the approximation usually used in hydromagnetic theory, 

the displacement current e 3E/c3t is neglected in comparison with 

the conduction current J.  In this same approxina tion, the 

quantity dt/dt = e(3E  /dt - dE  _/3t) must also be neglected. 
Z <o Z_L 

But then ^ may be regarded as constant in time, and the corres- 

ponding longitudinal part of E, may be split off and discarded. 

The justification for this procedure is that the longitudinal 

»«iS»<»«»Wi!*"** *»**<**** 
* "5" r~~T.J*-*'—"TT" 

. .- A > '••'•••.• ; 
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» 
part of E will be e slowly varying electric field, and hence will 

I 

i 

have little effect on the magnetic field B.  In this approximation, 
AM* 

J  is continuous across the boundary.  But in the region z > 0. z 

J = 0 because o = 0; hence J = E„ = 0 at z = 0. 

The preceding discussion has established the six boundary 

conditions 

Bxl " Bx2<  Byl ~ By2'  Bzl " Bz2 

Exl = Sx2>  Eyl = Ey2' **   = (V X^z = ° 
(23) 

In order to employ these conditions in the solution of the mag- 

netic diffusion problem in the form outlined above, it would be 

necessary to express them in terms of B  Bof   and the derivatives 1 

of these vector*-  However, tiais is not possible for the conditions 

on E  and E , because (22b) and (22c) give the only direct relation x      y' c u 

between E and the derivatives of B, and this relation breaks down 

in the region z > 0, where a = 0. 

Here appears the essential complicating distinction between 

magnetic and scalar diffusion problems.  The boundary conditions 

of the magnetic problem may each involve several components of 

B, as in a condition on V x J3; as a consequence, the problem 

cannot generally be split into three independent problems for the 

Cartesian components.  Moreover, the boundary conditions are 

conditions on the electromagnetic field which cannot be reduced 

to conditions on the magnetic field alone. 

This last difficulty, however, can be circumvented in a 

simple wayj if the problem is formulated in terms of the po- 

tentials rather than the field intensities, one can express all 

. " >•:'" ••'•'•/ 'W•'''"•':' ••>' 
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of the boundary conditions in terms of the same dependent variables 

that appear in the diffusion equation.  As mentioned above', if the 

displacement current is neglected (as is always done in hydro- 

magnetism), then the quantity dr/dt  must also be neglected, and 

the longitudinal component of _E due to a constant surface charge 

X   can be split off t»nd discarded.  Then the field intensities can 

be represented in terms of the vector potential _A, 

B = V x A, E  =  -dA/dt (24) 

where 

V • A = 0. (25) 

Then all the equations (22) are satisfied identically (with 

p = 0 everywhere) except the first equation of (22b), which becomes 

# = *V2A- (26) 

t 
Since^B is finite, it follows from the first equation of (24) and 

from (25) that 

'•••-•*- 

Axl ~ Ax2*  Ayl ~ Ay2»  Azl ~ Az2 (27a) 

The former boundary conditions (23) on B, namely JE^ = .Bo, become 

V x M = v x A 2* (27b) 

In  view  of the  second  equation. (24),   (27a)   implies   that  E     and 

E     are   continuous  at   the   boundary.     The   remaining condition   (23), 
J 

namely E = 0, becomes 

SAz 
~5E = 0  at z = 0. (27c) 

Wo now have exactly six independent conditions on A= 

Equation (27a) gives three conditions; (27b) gives only two more, 

iMMWUW •'''' r i-   >'fW-'" •.'-• 

*~- -;v .'..-. 
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since the continuity of A  and A  implies the continuity of 

(V x A)_', and (27c) gives the sixth condition. 

The fact that five of t^hese six conditions are statements 

of continuity means that it will be necessary to solve simultaneously 

for the two vector fields A. , A_., where A-, (r,0) and Ao(r,0) are 

given and 

(28a) vJ 7*^ = dA^/dt in z < 0 

71&2 = 0 (28b) 

C* t>    O 

in z > 0 

and the boundary conditions (27) are satisfied 

The solution of this problem can be obtained by means of 

the following procedure.  According to (27c), A (x,y,0) is not a 

function of t.  In the region z ^z. 0 we may set 

A7,(r,t) = u(r) + v(r,t) 

where v(x,ysOpt) = 0.  Then 

(29) 

V2u =0,  H " > V2v. 

The solution of this diffusion problem for v is known from the 

theory of heat conduction (semi-infinte region, temperature zero 

on the boundary).  It is 
2 /. .   c 2 

v(rst)  =   (4itvtr3/2 ///    v(r»,0) 
— 00 —OD 

ff/^t   -%V4yt 
-e d3r' ,(30) 

3 

1 

where 

Now  let 

§1
2 =  (x-x')2 +  (y-y')2 +   (z-z')2 

f 2 =   (x-x')2 +   (y-y')2 +   (z+z')2. 

jf 2 =   (x-x'f +   (y-y')* * z2. 

«..   H 
o >f/r^-- !.:\*-.. •   A 
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Then According to equation   (1)   of Appendix A,   the  field u(r) 

in  the   region  z <C 0  is   given  by 

00      •*; u =  " fa Sff~ ,3Az(x',y',0,0)dx«dy' 
-co 

and the   field A  „  in  the   region   z ^> 0  is   given by 
oo      - 

Az2  =|i//f      Az(x»9y',C,0)dx'dy' 

(31) 

(32) 
-oo 

The   field  A     is  now  determined  throughout  space  by  equations 

(29),   (30),    (31),   and   (32). 

The problem of determining A  and A  is more difficult, 

because of the nature of the boundary conditions on these 

quantities.  According to equation (l) of Appendix -u- and the 

boundary conditions (27a). A  and A  can be represented in the x      y 

region 7. > 0 by 

oo 
Ax2 =§t//r3Axl(x',y<,0,t)dx»dy« 

-co 

Av2 = fi//r  A  (x'jy«,0,t)dx'dy'. 
J       -oo    J 

(33) 

The remaining boundary conditions s  which state that 3A /3z and 

dA /82 ire continuous at the boundary, must now be used to obtain 

the sjlution in the region z < 0.  This problem can be formulated 

most simply in terms of Green's function, which is here defined 

as the field G(x,y,z°, x' ,j •, z» j t) at the point (x',y',z') at time 

t due to an instantaneous point source of unit strength generated 

at the point (x,y,z) at time zero.  It is assumed that z,z' <. 0, 

that the field in the region z < 0 at t = 0 is zero everywhere 

except at (x',y'sz') and that the boundary conditions are 

i 
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satisfied   at   z  =  0.     Then  one   can  show     that  the   field  at  the  point 
! 

(x,y,z)   at   time  t  due   to  an  initial field A   (x',y', z',0)   at   time 

zero  is   given by 
oo o 

Axl(x,y,z,t)   = /// Axl(x'Py',z',0)G(x,y,z;x',y',z'jt)dx'dy'dz'o   (34) 

Thus if one can determine Green's function G for the problem, (34) 

gives the solution in the region z< 0 for an arbitrary initial 

field A  (x«,y»,z« ,0).  Once this field is known, the field in 

the region z *> 0 is determined by (33). 

If G(x,yj,z,t) is any solution in the region z < 0 of the 

diffusion equation and the boundary conditions on Av and A x y 
(in particular,   it  may  be   the   Green's   function),   then  G(x,y,0,t) 

is   the  field  on  the  boundary.     Substituting  into   (33)   and   applying 

the   boundary  condition  on  dG/oz ,  we   obtain 
-. . 

I     «                        TSGl               1     -,.,           3      r?           z   G(x",yn,0,t) ,   ..^   „      ,.,„,. -r~ = •== lim      •*- // -s k "   >   >   ' 5=-    ,    dx"dy".    (35) 
Ld55Ji=0       2% z-*0    8z -oo [(x-x»)2 +   (y-y")2 +  z2]3/d 

The   author has  not yet   succeeded  in  determining a  Green's  function 

which  bulisfies   (35)   in  the   general   three-dimensional  case. 

There   is   one   special case   in which the   entire  problem can 

be   solved  with eases      the   case   in which A     and A     are   functions x     y 

J of z only.  Then in equations (33), the quantities A  and A 

•.•J&     | can be brought out from under the integral signs and the integrations 

can be performed explicitly„  The results are that Ax2 and A g are 

independent of position in the region z > 0.  Thus dA /dz and 

' ** • •& ;.   y     .       dA /dz are zero at z = 0, and in the region z < 0 the diffusion 

Garslaw and Jaeger (1947), chapter XIII 

v^.   M ••    '' • ..-,     v7'v  *^ 

•s 



-21- 

problem for A and A  is formally exactly analogous to the problem 

of heat condueition in a semi-infinite medium with the adiabatic 

boundary condition.  '^'he solution for A  is thus 

A  ,   =   (4Tivt)"l/2    /    Ax(z',0) 
-co 

2 i2 ' -(z-z»)   /4Vt -(z+z')V*Vt 
e + e dz' , 

r 

j 
& 

and A  -   is  given by  a  similar equation. 

A  slightly  different   approach  to   the general   (three- 

dimensional)   problem is   obtained if   it   is  assumed  that y, ,   and 

Vg  are   both finite,   but   that    V 2 >> v1, .      The   boundary  conditions 

(27)   remain exactly  the   same.     AH components   of  A^ and   v   x k^ are 

continuous  across   tfje   boundary.     From the  electromagnetic   equations 

(22),   one   finds   that   (V  x   BJ     must  be   continuous,   and  hence   that 

,-1 6A /dt must  be   continuous   across   the  boundary.      Ba% A     itself 

is   continuous,   so that   (unless    V->   =    V?)   one   can  conclude   that 

BA /dt  =  0,   as  before.     Now  the   diffusion  equation  is  satisfied 

both below and above   the  boundary   (but with different  values   of V ), 

so  that both fields ^A,   and JV„  can be represented  in   terms  of 

Green's  functions.     It  may prove   to be   an advantage   to have 

functions   of   the   same   type   on  both sides   of  the  boundary. 

In the   composite  medium with finite     w-'g,   the   boundary 

conditions can  also  be   stated  in t erms   of  B  rather than  of  A. 

They  are 

— 1      —2 

Vx(Vx B1)x  =   *,(VxJI2)x,     ^(V XB1)J =  Vg(V  xJe)y 

(V x  B1)z =   (V  xB2)z =  0. 

^^S^eaaRjas**- r,    •  •  •    • ,.y. •• ,     s • 
' •    • •' •- ' L •   v ' -• v     •   . 
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(The la.st of these holds in the approximation used here, in which 

• oo , 

the conditions on (7 x B)„ and (V x B)  in their present form give 

no information about B,,  However, these conditions can be trans- 

formed in this ca3e into conditions somewhat resembling (35).  I« 

the region z > 0, these conditions state that when v*Q 
= oo , 

V x B  = Op and hence B„ = VV.  Now since B _ = 3V/oz is given on 

the boundary, V is determined throughout the region z > 0 by 

oo 
7: 
-00 

V = - ^//f   1Bzl(x«,y',0)clx«dy*. 

1 

ft 

I 
I 

* 

,W)IIH, II !»»>••—I 

B -(x.y.O.t) = dV^X^»Q),  B .(x.y.O.t) = 8V(xiy»°> xl  »" » 8x   '   yl  'J s * oy 

are the required conditions.  It should be noted that here the 

various components of J3 are very much mixed together in the 

boundary conditions.  One great advantage of the formulation 

based on the vector potential is that it proves possible to 

separate the problem into thrss independent diffusion problems 

for Ax, Ay, Az. 

It is possible to extend the preceding results of this 

section to the case of a spherical boundary between the two media, 

The boundary conditions on A are that A and V x A are continuous 

across the boundary, and that the normal component BA^/dt = 0 

p 
at the boundary r = a.  The field V J3g = 0 for r -y a can be 

expressed in terms of the field on the surface by means of 

integrals similar to equation (l) of Appendix A; see the same 

Jeffreys (1950), p, 221. 

s- - •'. 
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reference  to  Jeffreys.     The  field  k    can  be  determined  by  a method 

similar   to   that   used   in  the   case   of   A     with  a  plane   boundary; 

the  solution  of  the  diffusion problem in  the   interior  of the 

sphere with v =  0  on the   surface   is   very much more   complicated 

than   the   corresponding solution in a   semi-infinite  region,   but 
•ti- 

lt  is   given in  the   literature   . 

— 
.'"5 

'"Carslaw   and   Jaeger      (1947),   pp.   210-212, 

I 
>• •.-> 7:rW- 

' 
•-.- 

.' .      r     *     jrML'   . 
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Appendix A;  Solution of Laplace's Equation In a 

Serai-infinite Region. 

In the case of the semi-infinite region z > 0, the well- 

known integral 

dS f(«.7.«) = fe//[£" - " ? 

of Laplace's equation can be transformed into the expression 

rtv  „ ,1 - z ff f(x'vv',0)dx'dy' ,. 

[<*-*')2 + (y-y')2+ z2"]^' 

which gives the values of the harmonic function f throughout z > 0 

in terms of its values on the plane z = 0. 

One application of this formula is the justification of the 

use of equations (19) to approximate the field at tne surface of 

the mantle due to an upwelling at the surface of the core.  »Ve 

can split the total field B into the constant (initial) field b 

and a variable field p produced by the action of the fluid motion 

on b.  We assume that the upwelling is sufficiently well localized 

that the improper integrals 

oo 2JT 
I±  = it'1  / / j3±(p, <p ,0)pdpd? 

o o 
(A2) 

exist.  (This will be the case, for instance, if condition 4, 

p. 8, on R(p) is satisfied.)  Now the variable field at the 

surface of the mantle is given by (Al) with (^(Xjy.z) substituted 

for f(x,y,zH here z is regarded as representing the height of the 

surface of the mantle above that of the core.  A representative 

•$*• A   proof   is   given  in  Jeffreys   (1950),   p.   221. 

••'a. *i   f'X>' i -32   . 
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Multiplying equation (l) by 3, one obtains 

3(B*)/3t = B • V x (v x B) ^•B V^r      f n     —     n\ I    /T->1\ 
X \V    X   BJ   \m      v DI; 

The first term on the right can be transformed using vector 

identities in the following ways 

B • fv x (v x B)l = B • r( (B • V)v - (v • V)B - B(V • v)1 

2/„ = B.B, dv./dx,   - %  v • V(B*) - B*(v • v) 
1   j        1 J &  '~** >S^\ *^-v\ -*-»* 

Let 

V  - 1 '-v* * fli vij    ^U,xj    axi 
(B2) 

Then 

B • [V x (v x B)] = B1BJV1J - £ V • V(B2) - Vi±B
2. 

The second term on the right in (Bl) can be transformed 

as follows: 

-B • \ V x (V x B) I = V • TB x (VxB)]- (V x B)2 

= -i V2(B2) - (V x B)2 - V- F(B» V)Bl. 

The last term can be written in various forma; 

dB, dB^^   o,2(BiBj   dB1 6Bj, 
dx,  3x; 3x.   ax . Sx . (V x B)*. 

Selecting  the   last  of   these,   and   substituting  into   (Bl) 

we   find 

d     ,B* 
-rr   (~)   =  B4B.V« V, ,Bf  +  V dt   v~2"y   "  "i"j¥ij  ~   *ii~ 

P,B' as, 3B, .,2,5. ^       w~i  w"i 

Here  d/dt  =   a/at  +  v   •   V.     Introducing the magnetic   stress   tensor 

1   Q2: 
Ti.1 =F (BiBJ -^B<5ij) (33) 

•^ '»• ••.-  -..v..;.  • ?ti -  • y      _  - 
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vaiue of the field at the surface can be obtained by setting 

x = y = 0 in (Al)«s the corresponding value (3, (0,0,z) is tho field 

at that point on the surface of the mantle which is directly above 

the center cf the upwelling in th3 core.  This value can be 

expressed in the form 

Pi(0s0,z) = 4- / /{3,(ps(ps0)(p
2+z2)°3/2pdpdip„      (A3) 

o o . 

Now (3^(0P0,z) is certainly finite.  hence there is a distance c 

such that "most" of the field p^OpOjz) comes from sources lying 

within a circle of radius c about the origin in the plane z = 0, 

This quantity c could be regarded as the "radius of the upwelling." 

so far as its magnetic effects are concerned.  If we now make the 

additional assumption that z is larger than c, we can (in a very 

crude approximation) neglect the term p  in the denominator of 

(A3).  We then obtain 

c   2* 
P1(0,09z)'^ —i^j / / p1(pp<p„0)pdpdcp 

2ltZc o o 2z' 
(A4) 

ar 

Supplement s  Diffusion-Induction Equation for 

the Energy Density. 

In scalar diffusion theory, there is often available a 

conservation principle which may be or some U3e in predicting or 

visualizing the course of the diffusion process.  In magnetic 

diffusion theory there is no field quantity which is actually 

conserved, but one can write the differential equation for the 

energy density B /2ju   in the form of a diffusion equation with a 

loss term. 

ignwamua*"* * *-• •«*•- >«    - • •• 
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v?a can reduce this expression to the slightly more symmetrical form 

,2\ 
d (B

2
   )   = T  v V, B  ,  . 

KM 

- 33^^ 8B. 1 

The first two term3 represent energy transfer from the fluid 

motion to the field.  1'he quantity V.. is simply V • v, so that 

if the fluid is incompressible the entire contribution of motional 

induction is contained in the 3calar product T. .V. . of the magnetic 

stress tensor (B3) and the strain tensor (B2) of the fluid motion. 

If the fluid is at rest, the first two terms on the right 

in (84) vanish, the symbol d/dt on the left reverts to d/dt,   and 
o 

the equation reduces to a diffusion equation for B /2/u    with a 

loss term -(V /u)(dB./ox,)(oB,/3x:.), m'r 1'  J   1   j 

Under some circumstances, the flux of J3 through a surface 

may be conserved during diffusion of the field.  If one can somehow 

establish, without first solving the entire diffusion problem, that 

for some specified curve G the right side of the equation 

-|r/ B * d3 =-y_/ (V x B) dr 

will  remain  zero  during  a  given time   interval,   then  one   can 

conclude  that  the   flux   through the   corresponding surface  S will 

remain constant  during   that   interval. 

- • — 
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ARE USED FOR ANY PURPOSE OTHER THAN IN CONNECTION WITH A DEFINITELY RELATED 
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